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A Transformer-based Model with Self-distillation

for Multimodal Emotion Recognition in

Conversations
Hui Ma, Jian Wang, Hongfei Lin, Bo Zhang, Yijia Zhang, and Bo Xu

Abstract—Emotion recognition in conversations (ERC), the
task of recognizing the emotion of each utterance in a con-
versation, is crucial for building empathetic machines. Exist-
ing studies focus mainly on capturing context- and speaker-
sensitive dependencies on the textual modality but ignore the
significance of multimodal information. Different from emotion
recognition in textual conversations, capturing intra- and inter-
modal interactions between utterances, learning weights between
different modalities, and enhancing modal representations play
important roles in multimodal ERC. In this paper, we propose a
transformer-based model with self-distillation (SDT)1 for the task.
The transformer-based model captures intra- and inter-modal
interactions by utilizing intra- and inter-modal transformers, and
learns weights between modalities dynamically by designing a
hierarchical gated fusion strategy. Furthermore, to learn more
expressive modal representations, we treat soft labels of the
proposed model as extra training supervision. Specifically, we
introduce self-distillation to transfer knowledge of hard and soft
labels from the proposed model to each modality. Experiments
on IEMOCAP and MELD datasets demonstrate that SDT out-
performs previous state-of-the-art baselines.

Index Terms—Multimodal emotion recognition in conversa-
tions, intra- and inter-modal interactions, multimodal fusion,
modal representation.

I. INTRODUCTION

EMOTION recognition in conversations (ERC) aims to

automatically recognize the emotion of each utterance

in a conversation. The task has recently become an impor-

tant research topic due to its wide applications in opinion

mining [1], health care [2], and building empathic dialogue

systems [3], etc. Unlike traditional emotion recognition (ER)

on context-free sentences, modeling context- and speaker-

sensitive dependencies lie at the heart of ERC.

Existing mainstream works on ERC can generally be cat-

egorized into sequence- and graph-based methods. Sequence-

based methods [4]–[11] use recurrent neural networks or

transformers to model long-distance contextual information

in a conversation. In contrast, graph-based methods [12]–[15]

design graph structures for conversations and then use graph

neural networks to capture multiple dependencies. Although
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Wendy, we had a deal!  

Yeah, you promised! 

Wendy! Wendy! Wendy! 

[anger] Who was that? [neutral]

Wendy bailed. I have no 

waitress. [sadness] 
Oh... that's too bad. 

Bye bye. [sadness] 

Twelve dollars an hour. 

[neutral] Mon. I wish I could, 

but I've made plans to 

walk around. [neutral]
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AudioVisual Text

Turn

Text

You know, Rachel, 

when you ran out of 

your wedding, I was 

there for you. [anger] 

7

Audio Visual

Fig. 1. A multimodal conversation example from the Friends TV series.

these methods show promising performance, most of them fo-

cus primarily on textual conversations without leveraging other

modalities (i.e., acoustic and visual modalities). According to

Mehrabian [16], people express emotions in a variety of ways,

including verbal, vocal, and facial expressions. Therefore, mul-

timodal information is more useful for understanding emotions

than unimodal information.

Unlike emotion recognition in textual conversations, we

argure that three key characteristics are essential for mul-

timodal ERC: intra- and inter-modal interactions between

conversation utterances, different contributions of modalities,

and efficient modal representations. An example is shown in

Fig. 1. (1) To understand the importance of intra- and inter-

modal interactions, let us focus on the single and multiple

modalities, respectively. Recognizing “anger” emotion of the

7th utterance spoken by Monica is difficult using only “You

know, Rachel, when you ran out of your wedding, I was

there for you.”, but it becomes easy when looking back to

the textual expression of the 6th utterance because Rachel has

made plans to walk around. Additionally, we believe there

are two types of inter-modal interactions: interactions between

the same and different utterances. First, as stated above, it

is hard to identify the emotion of the 7th utterance using

its textual expression; however, it also would be easy when

fused with its visual and acoustic expressions since they burst

instantaneously. Second, we know that the textual expression

of the 5th utterance shows “neutral” emotion, and hence it

could be possible to identify “neutral” emotion of the 6th

utterance by interacting this utterance’s visual expression and

the 5th utterance’s textual expression. (2) To understand the

http://arxiv.org/abs/2310.20494v1
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importance of contributions of different modalities, let us focus

on the 3rd utterance. The textual and acoustic expressions play

more critical roles in recognizing “sadness” emotion than the

visual expression because a smiling face usually means “joy”

emotion. (3) To understand the importance of efficient modal

representations, let us focus on the textual expression of the

1st utterance, which contains multiple exclamation points. If

the learned representation does not include the meaning of “!”,

it is challenging to identify “anger” emotion.

Therefore, it is valuable to capture intra- and inter-modal

interactions between utterances, dynamically learn weights

between modalities, and enhance modal representations for

multimodal ERC. However, existing studies of the task have

some limitations in achieving these characteristics. On the

one hand, most methods have drawbacks in modeling intra-

and inter-modal interactions. For example, CMN [4], ICON

[5], and DialogueRNN [6] concatenate unimodal features at

the input level, and thus cannot capture intra-modal interac-

tions explicitly. While DialogueTRM [10] designs hierarchical

transformer and multi-grained interaction fusion modules to

explore intra- and inter-modal emotional behaviors, it ig-

nores inter-modal interactions between different utterances.

MMGCN [13] and MM-DFN [17] are graph-based fusion

methods that require manually constructed graph structures to

represent conversations. On the other hand, existing methods

rely on the designed model to learn modal representations, but

no work focuses on further improving modal representations

using model-agnostic techniques for ERC.

In this work, a transformer-based model with self-

distillation (SDT) is proposed to take into account the three

aforementioned characteristics. First, we introduce intra- and

inter-modal transformers in a modality encoder to capture

intra- and inter-modal interactions, and take positional and

speaker embeddings as additional inputs of these transform-

ers to capture contextual and speaker information. Next, a

hierarchical gated fusion strategy is proposed to dynamically

fuse information from multiple modalities. Then, we predict

emotion labels of conversation utterances based on fused mul-

timodal representations in an emotion classifier. We call the

above three components a transformer-based model. Finally, to

learn more effective modal representations, we introduce self-

distillation into the proposed transformer-based model, which

transfers knowledge of hard and soft labels from the model to

each modality. We treat the proposed model as the teacher and

design three students according to three existing modalities.

These students are trained by distilling knowledge from the

teacher to learn better modal representations.

In summary, our contributions are as follows:

• We propose a transformer-based model for multimodal

ERC that contains a modality encoder for capturing

intra- and inter-modal interactions between conversation

utterances and a hierarchical gated fusion strategy for

adaptively learning weights between modalities.

• To learn more effective modal representations, we devise

self-distillation that transfers knowledge of hard and soft

labels from the proposed model to each modality.

• Experiments on two benchmark datasets show the superi-

ority of our proposed model. In addition, several studies

are conducted to investigate the impact of positional and

speaker embeddings, intra- and inter-modal transformers,

self-distillation loss functions, and hierarchical gated

fusion strategy.

The rest of this paper is organized as follows: Section II

discusses the related work; Section III formalizes the task

definition and describes the proposed model; Section IV gives

the experimental settings; Section V presents the experimental

results and discussion; Finally, Section VI concludes the paper

and provides directions for further work.

II. RELATED WORK

A. Emotion Recognition in Conversations

ERC has attracted widespread interest among researchers

with the increase in available conversation datasets, such as

IMEOCAP [18], AVEC [19], and MELD [20], etc. Early stud-

ies primarily used lexicon-based methods [21], [22]. Recent

works have generally resorted to deep neural networks and

focused on modeling context- and speaker-sensitive depen-

dencies. We divide the existing methods into two categories:

speaker-ignorant and speaker-dependent methods, according to

whether they utilize speaker information.

Speaker-ignorant methods do not distinguish speakers and

focus only on capturing contextual information in a conversa-

tion. HiGRU [7] contains two gated recurrent units (GRUs) to

model contextual relationships between words and utterances,

respectively. AGHMN [23] uses a hierarchical memory net-

work to enhance utterance representations and introduce an

attention GRU to model contextual information. MVN [11]

utilizes a multi-view network to model word- and utterance-

level dependencies in a conversation. In contrast, speaker-

dependent methods model both context- and speaker-sensitive

dependencies. DialogueRNN [6] leverages three distinct GRUs

to update speaker, context, and emotional states in a conver-

sation, respectively. DialogueGCN [12] uses a graph convolu-

tional network to model speaker and conversation sequential

information. HiTrans [8] consists of two hierarchical trans-

formers to capture global contextual information and exploits

an auxiliary task to model speaker-sensitive dependencies.

However, most of them are proposed for the textual modal-

ity, ignoring the effectiveness of other modalities. Due to the

promising performance in the multimodal community, some

approaches tend to address multimodal ERC. DialogueTRM

[10] explores intra- and inter-modal emotional behaviors using

hierarchical transformer and multi-grained interaction fusion

modules, respectively. MMGCN [13] constructs a fully con-

nected graph to model multimodal and long-distance con-

textual information, and speaker embeddings are added for

encoding speaker information. MM-DFN [17] designs a graph-

based dynamic fusion module to reduce redundancy and

enhance complementarity between modalities. MMTr [24]

preserves the integrity of main modal representations and

enhances weak modal representations by using multi-head

attention. UniMSE [25] performs modality fusion at syntactic

and semantic levels and introduces inter-modality contrastive

learning to differentiate fusion representations among samples.
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This paper focuses on exploring intra- and inter-modal interac-

tions between utterances, learning weights between modalities,

and enhancing modal representations for multimodal ERC.

B. Multimodal Language Analysis

Multimodal language analysis is a rapidly growing field

and includes various tasks [26], such as multimodal emotion

recognition, sentiment analysis, and personality traits recogni-

tion. The key in this area is to fuse multimodal information.

Early studies on multimodal fusion mainly included early

fusion and late fusion. Early fusion [27], [28] integrates

features of different modalities at the input level. Late fusion

[29], [30] constructs distinct models for each modality and

then ensembles their outputs by majority voting or weighted

averaging, etc. Unfortunately, as stated in [31], these two kinds

of fusion methods cannot effectively capture intra- and inter-

modal interactions.

Subsequently, model fusion has become popular and various

models have been proposed. TFN [32] models unimodal,

bimodal, and trimodal interactions explicitly by computing

Cartesian product. LMF [31] utilizes low-rank weight tensors

for multimodal fusion, which reduces the complexity of TFN.

MFN [33] learns cross-modal interactions with an attention

mechanism and stores information over time by a multi-view

gated memory. MulT [34] utilizes cross-modal transformers

to model long-range dependencies across modalities. Rahman

et al. [35] fine-tuned large pre-trained transformer models for

multimodal language by designing a multimodal adaptation

gate (MAG). Self-MM [36] uses a unimodal label generation

strategy to acquire independent unimodal supervision and then

learns multimodal and unimodal tasks jointly. Yuan et al. [37]

adopted transformer encoders to model intra- and inter-modal

interactions between modality sequences. In order to capture

intra- and inter-modal interactions between conversation utter-

ances and meanwhile learn weights between modalities, we

present a transformer-based model.

C. Knowledge Distillation

Knowledge distillation (KD) aims at transferring knowledge

from a large teacher network to a small student network. The

knowledge mainly includes soft labels of the last output layer

(i.e., output-based knowledge) [38], features of intermediate

layers (i.e., feature-based knowledge) [39], and relationships

between different layers (i.e., relation-based knowledge) [40].

Depending on the learning schemes, existing methods on KD

are categorized into three classes: offline distillation [41], [42],

online distillation [43], [44], and self-distillation [45], [46].

In offline distillation, the teacher network is first trained and

then the pre-trained teacher distills its knowledge to guide the

student training. In online distillation, the teacher and student

networks are updated simultaneously, and hence its training

process is only one-phase. Self-distillation is a special case of

online distillation that teaches a single network using its own

knowledge.

Recently, KD has been used for multimodal emotion recog-

nition. For example, Albanie et al. [47] transferred visual

knowledge into a speech emotion recognition model using

unlabelled video data. Wang et al. [48] proposed K-injection

subnetworks to distill linguistic and acoustic knowledge rep-

resenting group emotions and transfer implicit knowledge into

the audiovisual model for group emotion recognition. Schon-

eveld et al. [49] applied KD to further improve performance for

facial expression recognition. Most existing models belong to

offline distillation, which requires training a teacher network.

In contrast, self-distillation needs no extra network except for

the network itself. While self-distillation has been successfully

applied in computer vision and natural language processing

[50]–[52], it focuses on unimodal tasks.

In this work, we adopt the idea of self-distillation to enhance

modal representations for multimodal ERC. Moreover, output-

based knowledge is used only due to the following reasons: (1)

Soft labels can be used as training supervision which contain

dark knowledge [38] and can provide effective regularization

for the model [53]. (2) Intuitively, the features of different

modalities vary widely, and hence matching fused multimodal

features with unimodal features is inappropriate2. (3) Our

teacher and student networks lying in the same model have

different architectures that results in an inability to inject rela-

tionships between different layers of the teacher network into

the student network [41]. Therefore, we adopt output-based

knowledge rather than feature- and relation-based knowledge.

III. METHODOLOGY

A. Task Definition

A conversation is composed of N consecutive utterances

{u1, u2, · · · , uN} and M speakers {s1, s2, · · · , sM}. Each

utterance ui is spoken by a speaker sφ(ui), where φ is the

mapping between an utterance and its corresponding speaker’s

index. Moreover, ui involves textual (t), acoustic (a), and

visual (v) modalities, and their feature representations are de-

noted as ut
i ∈ R

dt , ua
i ∈ R

da , and uv
i ∈ R

dv , respectively. We

represent textual, acoustic, and visual modality sequences of

all utterances in the conversation as Ut = [ut
1;u

t
2; · · · ;u

t
N ] ∈

R
N×dt , Ua = [ua

1 ;u
a
2 ; · · · ;u

a
N ] ∈ R

N×da , and Uv =
[uv

1;u
v
2 ; · · · ;u

v
N ] ∈ R

N×dv , respectively. The ERC task aims

to predict the emotion label of each utterance ui from pre-

defined emotion categories.

B. Overview

Fig. 2 gives an overview of our proposed SDT. After

extracting utterance-level unimodal features, the transformer-

based model consists of three modules: a modality encoder

module for capturing intra- and inter-modal interactions be-

tween different utterances, a hierarchical gated fusion module

for adaptively learning weights between modalities, and an

emotion classifier module for predicting emotion labels. Fur-

thermore, we introduce self-distillation and devise two kinds of

losses to transfer knowledge from our proposed model within

each modality to learn better modal representations.

2We tried to add feature-based knowledge, but the performance drops
significantly.
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Fig. 2. The overall architecture of SDT. After extracting utterance-level unimodal features, it consists of four key components: Modality Encoder, Hierarchical
Gated Fusion, Emotion Classifier, and Self-distillation.

C. Modality Encoder

The modality encoder obtains modality-enhanced modality

sequence representations that can learn intra- and inter-modal

interactions between conversation utterances.

Temporal Convolution: To ensure that three unimodal

sequence representations lie in the same space, we feed them

into a 1D convolutional layer:

U′
m = Conv1D(Um, km) ∈ R

N×d, m ∈ {t, a, v}, (1)

where km is the size of convolutional kernel for m modality,

N is the number of utterances in the conversation, and d is

the common dimension.

Positional Embeddings: To utilize positional and sequen-

tial information of the utterance sequence, we introduce posi-

tional embeddings [54] to augment the convolved sequence:

PE(pos,2i) = sin
(

pos

100002i/d

)
,

PE(pos,2i+1) = cos
(

pos

100002i/d

)
,

(2)

where pos is the utterance index and i is the dimension index.

Speaker Embeddings: To capture speaker information of

the utterance sequence, we also design speaker embeddings to

augment the convolved sequence. Speaker sj in conversations

is mapped into a vector:

sj = Vso (sj) ∈ R
d, j = 1, 2, · · · , M, (3)

where M is the total number of speakers, Vs ∈ R
d×M is a

trainable speaker embedding matrix, and o (sj) ∈ R
M is a

one-hot vector of speaker sj , i.e., 1 in the jth position and 0
otherwise.

Hence, speaker embeddings corresponding to the conversa-

tion can be represented as SE =
[
sφ(u1); sφ(u2); · · · ; sφ(uN )

]
.

Overall, we augment positional and speaker embeddings to

the convolved sequence:

Hm = U′
m +PE+ SE. (4)

Here, Hm is the low-level positional- and speaker-aware
utterance sequence representation for m modality.

Intra- and Inter-modal Transformers: We introduce

intra- and inter-modal transformers to model intra- and inter-

modal interactions for the utterance sequence, respectively.

These transformers adopt the transformer encoder [54], which

contains three inputs, queries Q ∈ R
Tq×dk , keys K ∈ R

Tk×dk ,

and values V ∈ R
Tk×dv . We denote the transformer encoder

as Transformer (Q,K,V).
For the intra-modal transformer, we take Hm as queries,

keys, and values:

Hm→m = Transformer (Hm,Hm,Hm) ∈ R
N×d, (5)

where m ∈ {t, a, v}. The intra-modal transformer enhances

m-modality sequence representation by itself and thus can cap-

ture intra-modal interactions between the utterance sequence.

For the inter-modal transformer, we take Hm as queries,

and Hn as keys and values:

Hn→m = Transformer (Hm,Hn,Hn) ∈ R
N×d, (6)

where m ∈ {t, a, v} and n ∈ {t, a, v} − {m}. The inter-

modal transformer enables m modality to get information from
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n modality and hence can capture inter-modal interactions

between the utterance sequence.

In summary, n-enhanced m-modality sequence representa-

tion, Hn→m, is obtained from the modality encoder module,

where n,m ∈ {t, a, v}.

D. Hierarchical Gated Fusion

We design a hierarchical gated fusion module containing

unimodal- and multimodal-level gated fusions to adaptively

obtain enhanced single-modality sequence representation and

dynamically learn weights between these enhanced modality

representations, respectively.

Unimodal-level Gated Fusion: We first use a gated mech-

anism to filter out irrelevant information in Hn→m:

gn→m = σ (Wn→m ·Hn→m) , (7)

H′
n→m = Hn→m ⊗ gn→m, (8)

where Wn→m ∈ R
d×d is a weight matrix, σ is the sigmoid

function, ⊗ is the element-wise product, and gn→m denotes

the gate.

Then, we concatenate H′
m→m, H′

n1→m, and H′
n2→m, fol-

lowed by a fully connected (FC) layer to obtain enhanced

m-modality sequence representation:

H′
m=Wm ·

[
H′

m→m;H′
n1→m;H′

n2→m

]
+bm ∈ R

N×d, (9)

where m ∈ {t, a, v}, n1 and n2 represent other two modalities,

Wm ∈ R
3d×d and bm ∈ R

d are trainable parameters.

We set H′
m = [h′

m1;h
′
m2; · · · ;h

′
mN ], where h′

mi is en-

hanced m-modality representation for the utterance ui.

Multimodal-level Gated Fusion: We also design a gated

mechanism using the softmax function to dynamically learn

weights between enhanced modalities for each utterance.

Specifically, the final multimodal representation of the ut-

terance ui is calculated by:

[gti;gai;gvi] = softmax ([W·h′
ti;W·h′

ai;W·h′
vi]), (10)

h′
i =

∑

m∈{t,a,v}

h′
mi ⊗ gmi, (11)

where W ∈ R
d×d is a weight matrix, gti, gai, and gvi are

learned weights of t, a, v modalities for the utterance ui,

respectively.

Thus, multimodal sequence representation of conversation

utterances is obtained and denoted as H′ = [h′
1;h

′
2; · · · ;h

′
N ].

E. Emotion Classifier

To calculate probabilities over C emotion categories, H′ is

fed into a classifier with an FC and softmax layer:

E = We ·H
′ + be ∈ R

N×C , (12)

Ŷ = softmax (E) , (13)

where We ∈ R
d×C and be ∈ R

C are trainable parameters. We

set Ŷ = [ŷ1; ŷ2; · · · ; ŷN ], where ŷi is the emotion probability

vector for the utterance ui. Finally, we choose argmax (ŷi) as

the predicted emotion label for ui.

Task Loss: We utilize the cross-entropy loss for estimating

the quality of emotion predictions during training:

LTask = −
1

N

N∑

i=1

C∑

j=1

yi,j log (ŷi,j), (14)

where N represents the number of utterances in the conver-

sation, and C represents the number of emotion classes. yi

and ŷi denote the ground-truth one-hot vector and probability

vector for the emotion of ui, respectively.

F. Self-distillation

Soft labels containing informative dark knowledge can be

used as training supervision; hence, we devise self-distillation

to transfer knowledge of hard and soft labels to each modality,

and guide the model in learning more expressive modal

representations.

We treat our proposed transformer-based model as the

teacher and design three students according to existing modal-

ities. Specifically, a classifier consisting of an FC and softmax

layer only used during training, is set after each unimodal-

level gated fusion. During training, textual, acoustic, and visual

modality encoders with their corresponding unimodal-level

gated fusions and classifiers are trained as three students (i.e.,

student t, student a, student v) via distilling from the teacher.

The output of student m is its predicted emotion probabil-

ities:

Em = W′
m · ReLU (H′

m) + b′
m ∈ R

N×C , (15)

Ŷm = softmax (Em) ,

Ŷτ
m = softmax (Em/τ) ,

(16)

where m ∈ {t, a, v}, W′
m ∈ R

d×C and b′
m ∈ R

C are train-

able parameters. τ is the temperature to soften Ŷm (written

as Ŷτ
m after softened) and a higher τ produces a softer distri-

bution over classes [38]. We set Ŷm = [ŷm1; ŷm2; · · · ; ŷmN ]
and Ŷτ

m = [ŷτ
m1; ŷ

τ
m2; · · · ; ŷ

τ
mN ].

During training, we introduce two kinds of losses to train

the student m to learn better enhanced m-modality sequence

representation, where m ∈ {t, a, v}.

Cross Entropy Loss: We minimize the cross entropy loss

between the predicted probability of the student m and the

ground-truth:

Lm
CE = −

1

N

N∑

i=1

C∑

j=1

yi,j log (ŷmi,j), (17)

where ŷmi is the emotion probability vector of the student

m for ui. In this way, knowledge from hard labels is directly

introduced to the student to learn better modal representations.

KL Divergence Loss: To make the output probability of

the student m approximate the output of the teacher (i.e., soft

labels), the Kullback-Leibler (KL) divergence loss between

them is minimized:

Lm
KL =

1

N

N∑

i=1

C∑

j=1

ŷτ
mi,j log

(
ŷτ
mi,j

ŷτ
i,j

)
, (18)
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TABLE I
STATISTICS OF THE TWO DATASETS.

Dataset
#Conversations #Utterances

#Classes

Train+Val Test Train+Val Test

IEMOCAP 120 31 5810 1623 6

MELD 1153 280 11098 2610 7

where ŷτ
mi and ŷτ

i are soften probability distributions of the

student m and the teacher, respectively. In this way, knowledge

from soft labels is transferred to the student to learn better

modal representations.

With both hard and soft labels, the overall loss can be

expressed as:

L = γ1LTask + γ2LCE + γ3LKL, (19)

LCE =
∑

m∈{t,a,v}

Lm
CE , (20)

LKL =
∑

m∈{t,a,v}

Lm
KL, (21)

where γ1, γ2, and γ3 are hyper-parameters that control the

weights of the three kinds of losses. In experiments, we set

γ1 = γ2 = γ3 = 1.

IV. EXPERIMENTAL SETTINGS

A. Datasets and Evaluations

We use IEMOCAP [18] and MELD [20] datasets to evaluate

the proposed model. The statistics of the two datasets are listed

in Table I.

IEMOCAP: The dataset consists of two-way conversations

of ten speakers, containing 153 conversations and 7, 433
utterances. The dataset is divided into five sessions, where the

first four sessions are used for training, while the last one is

for testing. Each utterance is labeled with one of six emotions:

happy, sad, neutral, angry, excited, and frustrated.

MELD: This is a multi-speaker conversation dataset col-

lected from the Friends TV series, containing 1, 433 conver-

sations and 13, 708 utterances. Each utterance is labeled with

one of seven emotions: neutral, surprise, fear, sadness, joy,

disgust, and anger.

Evaluation Metrics: Following previous works [6], [12],

we report the overall accuracy and weighted average F1-score

to measure overall performance, and also present the accuracy

and F1-score on each emotion class.

B. Feature Extraction

We extract utterance-level unimodal features as follows.

Textual Modality: Following [55], we employ RoBERTa

Large model [56] to extract textual features. Roberta, a

pre-trained model using a multi-layer transformer encoder

architecture, builds on BERT which can efficiently learn

textual representations. We fine-tune RoBERTa for emotion

recognition from conversation transcripts and then take [CLS ]

tokens’ embeddings at the last layer as textual features. The

dimensionality of textual feature representation is 1024.

Acoustic Modality: Following [13], we use openSMILE

[57] for acoustic feature extraction. openSMILE, a flexible

feature extraction toolkit for signal processing, provides a

scriptable console application to configure modular feature

extraction components. After using openSMILE toolkit, an FC

layer reduces the dimensionality of acoustic feature represen-

tation to 1582 for IEMOCAP and 300 for MELD.

Visual Modality: Following [13], we use DenseNet [58]

pre-trained on Facial Expression Recognition Plus dataset

for visual feature extraction. DenseNet, an effective CNN

architecture, consists of multiple dense blocks, each of which

contains multiple layers. The output of DenseNet is set to 342;

that is, the dimensionality of visual feature representation is

342.

C. Baselines

We compare SDT with the following baseline models.

CMN [4]: It uses two GRUs and memory networks to

model contextual information for both speakers, but it is only

available for dyadic conversations.

ICON [5]: It is an extension of CMN that captures inter-

speaker emotional influences using another GRU. Similar to

CMN, the model is applied to dyadic conversations.

DialogueRNN [6]: It adopts three distinct GRUs to track

the speaker, context, and emotional states in conversations,

respectively.

The above models concatenate textual, acoustic, and visual

features to obtain multimodal utterance representations.

MMGCN [13]: It constructs a conversation graph based on

all three modalities and designs a multimodal fused graph con-

volutional network to model contextual dependencies across

multiple modalities.

DialogueTRM [10]: It uses a hierarchical transformer

to manage the differentiated context preference within each

modality and designs a multi-grained interactive fusion for

learning different contributions across modalities for an utter-

ance.

MM-DFN [17]: It designs a graph-based dynamic fusion

module to fuse multimodal context features, and this module

could reduce redundancy and enhance complementarity be-

tween modalities.

MMTr [24]: It uses distinct bidirectional long short-term

memory networks (Bi-LSTMs) to learn contextual representa-

tions at the speaker’s self-context level and contextual context

level, and designs a cross-modal fusion module to enhance

weak modal representations.

UniMSE [25]: It uses T5 to fuse acoustic and visual

modal features with multi-level textual features, and performs

inter-modality contrastive learning to obtain discriminative

multimodal representations.

For a fair comparison, we re-run all baselines, except

MMTr and UniMSE, whose source codes are not released3.

3We carefully implemented DialogueTRM to explore its performance using
our extracted features, since its source code is not available; MMTr uses
basically same feature extractors as us, and therefore we did not implement
it; UniMSE uses T5 to learn contextual information on textual sequences and
embeds multimodal fusion layers into T5, and hence our extracted features
cannot be used for UniMSE and we also did not implement it.
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TABLE II
RESULTS ON THE IEMOCAP DATASET; “*”: BASELINES ARE RE-IMPLEMENTED USING OUR EXTRACTED FEATURES; BOLD FONT DENOTES THE BEST

PERFORMANCE.

Models
IEMOCAP

happy sad neutral angry excited frustrated
ACC w-F1

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

CMN 24.31 30.30 56.33 62.02 52.34 52.41 61.76 60.17 56.19 60.76 72.44 61.27 56.87 56.33
ICON 25.00 31.30 67.35 73.17 55.99 58.50 69.41 66.29 70.90 67.09 71.92 65.08 62.85 62.25
DialogueRNN 25.00 34.95 82.86 84.58 54.43 57.66 61.76 64.42 90.97 76.30 62.20 59.55 65.43 64.29
MMGCN 32.64 39.66 72.65 76.89 65.10 62.81 73.53 71.43 77.93 75.40 65.09 63.43 66.61 66.25
DialogueTRM 61.11 57.89 84.90 81.25 69.27 68.56 76.47 65.99 76.25 76.13 50.39 58.09 68.52 68.20
MM-DFN 44.44 44.44 77.55 80.00 71.35 66.99 75.88 70.88 74.25 76.42 58.27 61.67 67.84 67.85
MMTr - - - - - - - - - - - - 72.27 71.91
UniMSE - - - - - - - - - - - - 70.56 70.66

DialogueRNN* 57.64 57.64 77.96 80.25 75.52 70.56 68.24 64.99 73.91 75.95 59.06 62.41 69.38 69.37
MMGCN* 50.00 56.25 78.78 81.43 71.35 67.57 68.24 66.29 75.92 76.82 65.09 64.92 69.62 69.61
DialogueTRM* 72.22 62.84 85.71 83.33 69.27 68.12 79.41 66.67 67.22 75.00 57.22 63.28 69.87 69,93
MM-DFN* 57.64 52.87 84.49 86.07 76.04 71.66 70.59 65.04 73.24 75.26 55.91 62.19 69.87 69.91

SDT (Ours) 72.71 66.19 79.51 81.84 76.33 74.62 71.88 69.73 76.79 80.17 67.14 68.68 73.95 74.08

w/o self-distillation 71.53 58.52 79.59 79.43 69.27 70.65 69.41 67.05 69.23 77.09 67.98 68.07 70.73 71.10

In addition, we re-implement DialogueRNN, MMGCN, Dia-

glogueTRM, and MM-DFN with our extracted features,

namely DialogueRNN*, MMGCN*, DiaglogueTRM*, and

MM-DFN*. We use the same data splits to implement all

models.

D. Implementation Details

We implement the proposed model using Pytorch4 and use

Adam [59] as optimizer with an initial learning rate of 1.0e−4
for IEMOCAP and 5.0e − 6 for MELD. The batch size is

16 for IEMOCAP and 8 for MELD, and the temperature

τ for the two datasets are set to 1 and 8, respectively. For

the 1D convolutional layers, the number of input channels

are set to 1024, 1582, and 342 for textual, acoustic, and

visual modalities, respectively (i.e., their corresponding feature

dimensions) on IEMOCAP. On MELD, these parameters are

set to 1024, 300, and 342, respectively. In addition, the number

of output channels and kernel size are set to 1024 and 1
respectively for all three modalities on the two datasets. For

the transformer encoder, the hidden size, number of attention

heads, feed-forward size, and number of layers are set to 1024,

8, 1024, and 1, respectively. To prevent overfitting, we set the

L2 weight decay to 1.0e− 5 and employ dropout with a rate

of 0.5. All results are averages of 10 runs.

V. RESULTS AND DISCUSSION

A. Overall Results

Table II and Table III present the performance of baselines

and SDT on IEMOCAP and MELD datasets, respectively. On

IEMOCAP dataset, SDT performs better than all baselines and

outperforms MMTr by 1.68% and 2.17% in terms of overall

accuracy and weighted F1-score, respectively. In addition,

SDT achieves a significant improvement on most emotion

classes in terms of F1-score. On MELD dataset, SDT achieves

the best performance compared to all baselines in terms

of overall accuracy and weighted F1-score, and outperforms

4https://pytorch.org/

UniMSE by 2.46% and 1.09%, respectively. Similar to IEMO-

CAP, SDT performs superior on most emotion classes in terms

of F1-score.

Overall, the above results indicate the effectiveness of

SDT. Furthermore, we have several similar findings on the

two datasets: (1) DialogueTRM has a superior performance

compared to DialogueRNN, MMGCN, and MM-DFN that

use TextCNN [60] to extract textual features. This is because

textual modality plays a more important role for ERC [13],

and DialogueTRM extracts textual features using BERT [61],

which is more powerful than TextCNN. (2) The baselines

gain further improvement and achieve comparable results

when using our extracted utterance features. The results show

that our feature extractor is more effective and sequence-

and graph-based baselines can achieve similar performance

using our extracted features. (3) Even without self-distillation,

our proposed model is still comparable to strong baselines,

demonstrating the power of the proposed transformer-based

model.

B. Ablation Study

We carry out ablation experiments on IEMOCAP and

MELD. Table IV reports the results under different ablation

settings.

Ablation on Transformer-based Model: Positional em-

beddings, speaker embeddings, intra-modal transformers, and

inter-modal transformers are four crucial components of our

proposed transformer-based model. We remove only one com-

ponent at a time to evaluate the effectiveness of the compo-

nent. From Table IV, we conclude that: (1) All components

are useful because removing one of them leads to perfor-

mance degradation. (2) Positional and speaker embeddings

have considerable effects on the two datasets, which means

capturing sequential and speaker information are valuable.

(3) Inter-modal transformers are more important than intra-

modal transformers on the two datasets. This indicates that

inter-modal interactions between conversation utterances could

provide more helpful information.

https://pytorch.org/
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TABLE III
RESULTS ON THE MELD DATASET.

3
Models

MELD
neutral surprise fear sadness joy disgust anger

ACC w-F1
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DialogueRNN 82.17 76.56 46.62 47.64 0.00 0.00 21.15 24.65 49.50 51.49 0.00 0.00 48.41 46.01 60.27 57.95
MMGCN 84.32 76.96 47.33 49.63 2.00 3.64 14.90 20.39 56.97 53.76 1.47 2.82 42.61 45.23 61.34 58.41
DialogueTRM 83.20 79.41 56.94 55.27 12.00 17.39 27.88 36.48 60.45 60.30 16.18 20.18 51.01 49.79 65.10 63.80
MM-DFN 79.06 75.80 53.02 50.42 0.00 0.00 17.79 23.72 59.20 55.48 0.00 0.00 50.43 48.27 60.96 58.72
MMTr - - - - - - - - - - - - - - 64.64 64.41
UniMSE - - - - - - - - - - - - - - 65.09 65.51

DialogueRNN* 85.11 79.60 54.09 56.72 10.00 12.66 29.81 38.63 62.94 63.81 22.06 27.27 53.62 53.24 66.70 65.31
MMGCN* 81.53 79.20 58.36 57.75 8.00 13.79 31.73 39.40 69.90 63.43 20.59 24.56 52.17 53.49 66.40 65.21
DialogueTRM* 83.44 79.54 54.45 57.09 24.00 27.91 33.17 40.95 60.45 62.79 22.06 28.04 58.26 53.96 66.70 65.76
MM-DFN* 83.52 79.65 63.35 58.17 32.00 26.67 26.44 35.71 63.68 64.89 19.12 24.76 49.28 52.15 66.55 65.48

SDT (Ours) 83.22 80.19 61.28 59.07 13.80 17.88 34.90 43.69 63.24 64.29 22.65 28.78 56.93 54.33 67.55 66.60

w/o self-distillation 82.01 80.00 57.65 57.96 20.00 23.81 32.21 41.61 65.17 64.22 25.00 27.42 57.97 54.05 66.97 66.26

TABLE IV
RESULTS OF ABLATION STUDIES ON THE TWO DATASETS.

IEMOCAP MELD

ACC w-F1 ACC w-F1

SDT 73.95 74.08 67.55 66.60

Transformer-based model
w/o positional embeddings 72.27 72.39 66.86 66.20
w/o speaker embeddings 71.84 72.03 67.13 66.18
w/o intra-modal transformers 73.38 73.36 67.13 66.21
w/o inter-modal transformers 72.09 72.26 66.97 65.55

Self-distillation
w/o LCE 73.07 73.32 67.39 66.37
w/o LKL 72.95 73.03 67.09 66.33

Modality
Text 66.42 66.58 66.82 65.52
Audio 59.77 59.34 48.12 40.81
Visual 41.47 42.71 48.05 32.01
Text + Audio 72.52 72.75 67.05 66.24
Text + Visual 69.01 69.07 67.20 66.18
Audio + Visual 62.05 62.26 47.24 40.21

Ablation on Self-distillation Loss Functions: There are

two kinds of losses ( i.e., LCE and LKL) for self-distillation.

To verify the importance of these losses, we remove one loss at

a time. Table IV shows that LCE and LKL are complementary

and our model performs best when all losses are included. The

result demonstrates that transferring knowledge of both hard

and soft labels from the proposed transformer-based model to

each modality can further boost the model performance.

Effect of Different Modalities: To show the effect of

different modalities, we remove one or two modalities at a

time. From Table IV, we observe that: (1) For unimodal

results, the textual modality has far better performance than the

other two modalities, indicating that the textual feature plays

a leading role in ERC. This finding is consistent with previous

works [10], [13], [17]. (2) Any bimodal results are better

than its own unimodal results. Moreover, fusing the textual

modality and acoustic or visual modality performs superior

to the fusion of the acoustic and visual modalities due to the

importance of textual features. (3) Using all three modalities

gives the best performance. The result can validate that emo-

tion is affected by verbal, vocal, and visual expressions, and

integrating multimodal information is essential for ERC.
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Fig. 3. Performance of different fusion methods on the two datasets. Bold
font means that the improvement to all baselines is statistically significant
(t-test with p < 0.05).

Effect of Different Fusion Strategies: To investigate the

effect of our proposed hierarchical gated fusion module, we

compare it with two typical information fusion strategies: (1)

Add: representations are fused via element-wise addition. (2)

Concatenation: representations are directly concatenated and

followed by an FC layer. Add treats all representations equally,

while Concatenation could implicitly choose the important

information due to the FC layer. For a fair comparison, we

replace the hierarchical gated fusion module of our model with

hierarchical add and concatenation operations to implement

the Add and Concatenation fusion strategies, respectively. In

addition, we also compare SDT with a general transformer-

based fusion method (i.e., unimodal features are concatenated

and then fed into a transformer encoder) that we call Uni-Cat-

Transformer.

As shown in Fig. 3, compared with other fusion strategies,

our proposed hierarchical gated fusion strategy significantly

outperforms them. The result indicates that directly fusing

representations with Add and Concatenation is sub-optimal.

Our proposed hierarchical gated fusion module first filters

out irrelevant information at the unimodal level and then

dynamically learns weights between different modalities at the

multimodal level, which can more effectively fuse multimodal

representations.

In addition, our model achieves a significant performance

improvement over Uni-Cat-Transformer that demonstrates the

effectiveness of the proposed SDT in multimodal fusion.
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Fig. 4. Trends of all losses during training on the IEMOCAP dataset.

Interestingly, Uni-Cat-Transformer has poorer performance

than Add and Concatenation on IEMOCAP; however, it shows

an acceptable performance on MELD. This may be because

interactions between modalities are not as complex on MELD

as on IEMOCAP, and hence modeling modal interactions

by multiple transformer encoders could generate some noise

on MELD that makes Ui-Cat-Transformer gain comparable

performance with Add and Concatenation. In contrast, SDT

has superior performance than all baselines as it contains a

hierarchical gated fusion module to filter out noise informa-

tion, which further illustrates the usefulness of our proposed

hierarchical gated fusion strategy.

C. Trends of Losses

During training, we illustrate the trends of all types of losses

on IEMOCAP dataset to better understand how these losses

work, and Fig. 4 displays the results.

From Fig. 4(a), we find that LTask, Lt
CE , La

CE , and Lv
CE

keep descending in the whole training process. From Fig. 4(b),

we can see Lt
KL and La

KL also have decreasing trends except

for fluctuations at the beginning, and Lv
KL goes down during

early training except for the fluctuation and then goes up and

achieves stability. Therefore, all of the losses can converge.

These show that all students can learn knowledge from hard

and soft labels to improve the model performance. Besides, we

find that losses of student v (i.e., Lv
CE and Lv

KL) are larger

than the other two students. This may due to a unsuitable

learning rate for the student v. Hence, we would like to

adaptively modify learning rates between different modalities

to effectively optimize the proposed model in the future.

D. Multimodal Representation Visualization

We extract multimodal representations for each utterance on

IEMOCAP from our proposed transformer-based model with-

out and with self-distillation. Besides, pre-extracted unimodal

representations are concatenated to produce original multi-

modal representations. Then, these multimodal representations

are projected into two dimensions via the t-SNE algorithm

[62].

Fig. 5 illustrates the visualization results with different emo-

tion categories. Compared with original multimodal represen-

tations, representations learned by the proposed transformer-

based model become more clustered even without self-

distillation. However without self-distillation, multimodal rep-

resentations of similar emotions (i.e., “happy” and “excited”,

“angry” and “frustrated”) are difficult to separate; furthermore,

representations of “neutral” emotion are intermingled with

other emotions. By comparing Fig. 5(b) and Fig. 5(c), we

observe that our model with self-distillation yields a better

separation and representations of different emotions are less

mixed together. Therefore, introducing self-distillation training

could learn more effective multimodal representations.

On the other hand, we also show the visualization results

with different genders of speakers in Fig. 6. Fig. 6(b) and

Fig. 6(c) form two large clusters respectively corresponding

to the gender of the speaker. This interesting finding indicates

that with or without self-distillation, our model can distinguish

the gender of the speaker, which may also be helpful for ERC.

E. Case Study

To demonstrate the efficacy of SDT, we present a case

study. Fig. 7 shows a conversation that comes from MELD.

SDT identifies the emotions of all utterances successfully,

while DialogueRNN* and MMGCN* predict the 3rd utterance

as “surprise” incorrectly, probably because a question mark

“?” generally expresses “surprise”. This could indicate the

more powerful multimodal fusion capability of our proposed

model. On the other hand, using only the textual modality, our

model recognizes the 4th utterance as “neutral” wrongly. To

explore the reason behind it, we visualize multi-head attention

weights of SDT (only text) and SDT for the 4th utterance,

respectively. For SDT, we find that the weights of textual

features are obviously larger than acoustic and visual features

for the 4th utterance by outputting their weights. Therefore,

we visualize only attention weights of the transformers that

form enhanced textual modality representation in Fig. 8, and

other visualization results can be found in the appendix.

As can be seen from Fig. 8(a), the 4th utterance depends

heavily on the 3rd and 5th utterances when using only the

textual modality. The 3rd utterance, which expresses “neutral”

emotion, may be more important due to a larger number of

darkest attention heads; hence the 4th utterance is identified

as the same emotion as the 3rd utterance, i.e., “neutral”.

The utterance can be correctly recognized as “disgust” by

SDT for the following reasons: (1) According to Fig. 8(b),

the text of the 4th utterance is influenced the most by the

text of the 5th utterance whose emotion is “disgust”. (2)

From Fig. 8(c) and Fig. 8(d), we observe that the acoustic

and visual expressions of the 2nd, 4th and 5th utterances

are more valuable for the 4th utterance’s textual expression,

and the 4th and 5th utterances express “disgust” emotion.

Overall, the results show that interactions between modalities

are helpful in identifying emotion from different perspectives,

and therefore it is necessary to use multimodal information.

In addition, comparing Fig. 8(a) and Fig. 8(b), SDT learns

better to correlate the 4th utterance with the 5th utterance. The

finding illustrates that introducing self-distillation can learn

more appropriate attention weights.
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(a) Origin representations (b) Without self-distillation (c) With self-distillation

Fig. 5. t-SNE visualization of the multimodal representations with different emotion categories on the IEMOCAP dataset.

(a) Origin representations (b) Without self-distillation (c) With self-distillation

Fig. 6. t-SNE visualization of the multimodal representations with different genders of speakers on the IEMOCAP dataset.

Turn Speaker Visual Audio Text
Dialogue

RNN*

MM

GCN*

SDT

(only text)
SDT

Ground

Truth

1 Joey
Oh my god, 

you’re back!
surprise surprise surprise surprise surprise

2 Phoebe

Ohh, let me see 

it! Let me see 

your hand!

surprise surprise surprise surprise surprise

3 Monica

Why do you 

want to see my 

hand?

surprise surprise neutral neutral neutral

4 Phoebe

I wanna see 

what’s in your 

hand. I wanna

see the trash.

disgust disgust neutral disgust disgust

5 Phoebe

Eww! Oh, it’s all 

dirty. You should 

throw this out.

disgust disgust disgust disgust disgust

Fig. 7. An example of emotion recognition results in a conversation from the
MELD dataset.

F. Error Analysis

Although the proposed SDT achieves strong performance,

it still fails to detect some emotions. We analyze confusion

matrices of the test set on the two datasets. From Fig. 9, we

see that: (1) SDT misclassifies similar emotions, like “happy”

and “excited”, “angry” and “frustrated” on IEMOCAP, and

“surprise” and “anger” on MELD. (2) SDT also tends to

misclassify other emotions as “neutral” on MELD due to that

“neutral” is the majority class. (3) It is difficult to correctly

detect “fear” and “disgust” emotions on MELD because the

two emotions are minority classes. Thus, it is challenging

to recognize similar emotions and emotions with unbalanced

data.

Besides, we also investigate SDT performance on emotional

shift (i.e., two consecutive utterances spoken by the same

speaker have different emotions). As shown in Table V,

we observe that SDT performs poorer on utterances with

(a) Intra-modal transformer

(t → t) of SDT (only text)

(b) Intra-modal transformer

(t → t) of SDT

(c) Inter-modal transformer
(a → t) of SDT

(d) Inter-modal transformer
(v → t) of SDT

Fig. 8. Multi-head attention visualization for the 4th utterance in Fig. 7.
There are 8 attention heads and different colors represent different heads. The
darker the color, the more important for the 4th utterance.

TABLE V
TEST ACCURACY OF SDT ON UTTERANCES WITH AND WITHOUT

EMOTIONAL SHIFT

Dataset
Emotional Shift w/o Emotional Shift

#Utterances ACC #Utterances ACC

IEMOCAP 410 54.88 1151 80.71
MELD 1003 61.62 861 73.05
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(a) IEMOCAP (b) MELD

Fig. 9. The confusion matrices of the test set on the two datasets. The rows
and columns represent true and predicted labels, respectively.

emotional shift than that without it5, which is consistent with

previous works. The emotional shift in conversations is a

complex phenomenon caused by multiple latent variables, e.g.,

the speaker’s personality and intent; however, SDT and most

existing models do not consider these factors, which may result

in poor performance. Further improvement on the case needs

to be explored.

VI. CONCLUSION

In this paper, we propose SDT, a transformer-based model

with self-distillation for multimodal ERC. We use intra- and

inter-modal transformers to model intra- and inter-modal inter-

actions between conversation utterances. To dynamically learn

weights between different modalities, we design a hierarchical

gated fusion strategy. Positional and speaker embeddings are

also leveraged as additional inputs to capture contextual and

speaker information. In addition, we devise self-distillation

during training to transfer knowledge of hard and soft labels

within the model to learn better modal representations, which

could further improve performance. We conduct experiments

on two benchmark datasets and the results demonstrate the

effectiveness and superiority of SDT.

Through error analysis, we find that distinguishing simi-

lar emotions, detecting emotions with unbalanced data, and

emotional shift are key challenges for ERC that are worth

further exploration in future work. Furthermore, transformer-

based fusion methods cause high computational costs as the

self-attention mechanism of transformer has a complexity of

O
(
N2
)

with respect to sequence length N . To alleviate the

issue, Ding et al. [63] proposed sparse fusion for multimodal

transformers. Similarly, we plan to design a novel multimodal

fusion method for transformers to reduce computational costs

in the future.

ACKNOWLEDGMENTS

This work is partially supported by the Natural Science

Foundation of China (No. 62006034), the Natural Science

5In this paper, without emotional shift means two consecutive utterances
spoken by the same speaker have same emotions.

(a) Intra-modal transformer

(a → a) of SDT
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Fig. 10. Multi-head attention visualization for the 4th utterance in Fig. 7.
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APPENDIX

ATTENTION VISUALIZATION

Multi-head attention weights of the transformers in our SDT

that form enhanced acoustic and visual modality representa-

tions are visualized in Fig. 10.
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